Sean Burgess

image of Sean Burgess

Professor

Departments

Molecular & Cellular Biology

Offices and Labs

139 Briggs Hall
(530)754-5177
139 Briggs Hall
(530)754-5182

Profile Introduction

The nucleus is a crowded environment yet chromosomes are able to undergo a dynamic range of motion through the regulation of gene expression and repair of DNA damage. This problem is particularly acute during meiosis when hundreds of programed double-strand breaks must be repaired at once without chromosomes becoming hopelessly entangled. This choreography culminates in the pairing, synapsis and crossing over between homologous chromosomes. These events in turn are essential for the separation of homologous chromosomes at MI. Research in my lab has focused on studying the chromosome events of meiosis prophase I in budding yeast for over 16 years, where our work and provided mechanistic insight into the progressive nature of forming increasingly stabilized. Recently we have incorporated the zebrafish model into our study of meiotic chromosome dynamic, and we are the first lab study the sexual dimorphic events that occur during meiotic prophase at the molecular level in this genetically tractable vertebrate species.

Degrees

1999 Post-doc Molecular and Cellular Biology Harvard University
1993 PhD Genetics University of California, San Francisco
1987 BA Molecular Cellular & Developmental Biology University of Colorado, Boulder

Research Interests

Meiotic chromosome dynamics

Work in my laboratory explores the dynamic chromosome events that occur during the process of meiosis and how these processes are integrated to achieve accurate chromosome segregation. Chromosome missegregation is one of the leading causes of birth defects in humans. We combine the use of a wide array of tools, including genetics, molecular biology, biochemistry and live-cell imaging using budding yeast Saccharomyces cerevisiae and zebrafish Danio rerio as a model system.

Awards

Arnold and Mabel Beckman Foundation Young Investigator Award, 2000-2002
American Cancer Society Research Scholar 2001-2004
Helen Hay Whitney Post-doctoral fellowship 1993-1996

Department and Center Affiliations

Department of Molecular and Cellular Biology
UC Davis Cancer Center

ProfessionalSocieties

Genetics Society of America
American Association for the Advancement of Science (AAAS)

CBS Grad Group Affiliations

Biochemistry, Molecular, Cellular and Developmental Biology
Integrated Genetics and Genomics

Specialties / Focus

Integrated Genetics and Genomics
  • Chromosome Biology
  • Integrated Genetics and Genomics
  • Developmental Genetics
  • Model Organism Genetics
Biochemistry, Molecular, Cellular and Developmental Biology
  • Chromosome Dynamics and Nuclear Function
  • Molecular Genetics
  • Cell Biology
  • Developmental Biology
  • Cell Division and the Cytoskeleton
  • DNA Repair
  • Meiosis
  • Reproductive Biology

Labs

139 Briggs Hall website
  • Graduate students: Dan Chu (Genetics); Yana Blokhina (Genetics);Undergraduates: Sonia Chapiro, Ryan Solis, Tomas Rodriguez, James McGehee, Kelsey Walters, Ann Nguyen.

Teaching Interests

Genetics and Molecular Biology

Courses

MCB 164 Advanced Eukaryotic Genetics (Spring)
MCB 121 Molecular Biology of Eukaryotic Cells (Winter)
MCB 210 Molecular Genetics and Genomics (Fall)

Publications

  • Chu, DB and Burgess, SM. (2016). A computational approach to estimating nondisjunction frequency in Saccharomyces cerevisiae. G3 January 8, 2016; g3.115.024380

  • Schuster K, Leeke B, Meier M, Wang Y, Newman T, Burgess SM and Julia A. Horsfield. (2015). A neural crest origin for cohesinopathy heart defects.  Hum. Mol. Genet. 24 (24):7005-7016.

  • Lui DY, Cahoon CK, Burgess SM (2013) Multiple Opposing Constraints Govern Chromosome Interactions during Meiosis. PLoS Genet 9(1): e1003197

  • Ho, C-H and Burgess, SM (2011). Pch2 acts through Xrs2 and Tel1/ATM to modulate interhomolog bias and checkpoint function during meiosis. PLoS Genetics 7:e1002351

  • Wu HY, Ho HC, Burgess SM (2010). Mek1 kinase governs outcomes of meiotic recombination and the checkpoint response. Current Biology. 20:1707-1.

  • Mell, JC, Wienholz BL, Salem AA, and Burgess, SM (2008) Sites of recombination are local determinants of meiotic homolog pairing in Saccharomyces cerevisiae. Genetics 179: 773-784.

  • Mell, JC, Komachi, K, Hughes, O and Burgess, SM (2008) Cooperative interactions between pairs of homologous chromatids during meiosis in Saccharomyces cerevisiae. Genetics 179, 1125-1127

  • Wu, H-Y and Burgess, S.M. (2006). Two distinct surveillance mechanisms monitor meiotic chromosome metabolismm in budding yeast. Current Biol. 16, 2473-2479

  • Lui DY, Peoples-Holst TL, Mell JC, Wu HY, Dean E, Burgess SM. (2006). Analysis of close stable homolog juxtaposition during meiosis in mutants of Saccharomyces cerevisiae. Genetics 173:1207-22

  • Wu, H-Y and Burgess, S.M. (2006) Ndj1, a telomere associated protein, promotes meiotic recombination in budding yeast. Mol. Cell. Biol. 26: 3683.

  • Peoples-Holst, T.L. and Burgess, S.M. (2005). Multiple branches of the meiotic recombination pathway contribute independently to homolog pairing and stable juxtaposition during meiosis in budding yeast. Genes & Development 19: 863-874.

  • Peoples TL, Dean EW, Gonzalez O, Lambourne L and SM Burgess. (2002). Close, stable homolog juxtaposition during meiosis in budding yeast is dependent on meiotic recombination, occurs independent of synapsis and is distinct from DSB-independent pairing contacts. Genes & Development. 16: 1682-1695.

  • Burgess, SM (2002). Homologous chromosome associations and nuclear organization in the budding yeast, Saccharomyces cerevisiae. In: Homology Effects. Advances in Genetics (v46). Academic Press. San Diego:49-90