Richard J. McKenney

image of Richard J. McKenney

Assistant Professor

Departments

Molecular & Cellular Biology

Offices and Labs

LSA 3231
530-752-4852

Profile Introduction

I have a long-standing research interest in the cytoskeleton, and in particular the motor proteins that utilize the cytoskeleton as tracks for intracellular transport. I was fortunate to have an opportunity at basic research beginning early in my undergraduate career, where I worked on signaling pathways related to cancer. This work afforded me valuable, early experience in the lab, and confirmed to me that I wanted to pursue research as a career. I pursued graduate research focused on the mechanochemical regulation of the microtubule motor cytoplasmic dynein. At Columbia University, I joined the lab of Dr. Richard Vallee, who discovered the motor protein cytoplasmic dynein. My work was the first to describe how two regulatory proteins, LIS1 and NudE, are able to modulate dynein’s motor output, transforming it from a weak to a persistent motor. This work combined biochemistry and biophysical approaches to provide insights into long-standing questions in the dynein and brain development fields, as LIS1 is the causative gene of the neurodevelopmental disease lissencephaly. I then moved to the lab of Dr. Ron Vale at UCSF to continue my studies on dynein using advanced single molecule microscopy. In Ron's lab I have made several contributions to the dynein field, including how dynein organizes microtubule networks, how it is activated and linked to cargo through the dynactin complex and adapter proteins, and how its motor activity is directly influenced by post-translational modification of the microtubule track itself.

Degrees

2010 Ph.D. Pathology and Cell Biology Columbia University
2002 B.S. Biology Xavier University

Research Interests

Motor proteins and the cytoskeleton

My lab is interested in the fascinating world of molecular movement. We study how cells internally organize using molecular motor proteins. In particular, we focus on the microtubule cytoskeleton and the motor proteins that use this filament system for transport (kinesins and dyneins). We are interested in allosteric regulation of motor protein movement, how motor activity is balanced and coordinated, and how dysfunction in motor activity leads to human diseases such as cancer and neurodegeneration. The lab combines advanced molecular biology, biochemistry and single-molecule TIRF microscopy to address these problems.

Awards

NIH Pathway to Independence Award (K99/R00 - NINDS)

CBS Grad Group Affiliations

Biochemistry, Molecular, Cellular and Developmental Biology
Biophysics

Specialties / Focus

Biochemistry, Molecular, Cellular and Developmental Biology
  • Biochemistry
  • Cell Biology
  • Cell Division and the Cytoskeleton
  • Neurobiology

Publications

4/26/2016 5:24:05 PM
  • Ori-McKenney KM, McKenney RJ, Huang HH, Li T, Meltzer S, Jan LY, Vale RD, Wiita AP, Jan YN. Phosphorylation of β-Tubulin by the Down Syndrome Kinase, Minibrain/DYRK1a, Regulates Microtubule Dynamics and Dendrite Morphogenesis. Neuron90, 1-13 (2016).

  • McKenney, RJ, Huynh, W, Vale, RD, Sirajuddin, M. (2016). Tyrosination of α-tubulin controls the initiation of processive dynein-dynactin motility. The EMBO J. Mar 11. Epub ahead of print.

    • Faculty of 1000: Rated “Good” http://f1000.com/prime/726213598        
    • Perspective Article: Allan, V. J. (2016). A tale of two α-tubulin tails The EMBO Journal. DOI 10.15252/embj.201694325
  • McKenney, RJ, Huynh, W, Tanenbaum, ME, Bhabha, G, and Vale, RD (2014).  

         Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes.   

         Science. Jul 18;345(6194): 337-41. PMID: 25035494.

    • Faculty of 1000: Rated “Very Good” http://f1000.com/prime/718496492        
    • Perspective Article: Allan, V. (2014). One, two, three, cytoplasmic dynein is go! Science. Jul 18;345(6194):271-2.
    • Perspective Article: Cianfrocco, MA and Leschziner, AE (2014). Traffic control: adaptor proteins guide dynein–cargo takeoff. The EMBO Journal. Sep 1;33(17):1845-6.
    • Perspective Article: Dodding, MP (2014). Backseat drivers: Cargo adaptors and dynactin activate cytoplasmic dynein motility. Cell Research. Aug. 22.
  • Tanenbaum ME*, Vale RD, McKenney RJ* (2013). Cytoplasmic Dynein

         Crosslinks and Slides Antiparallel Microtubules Using Its Two Motor Domains. eLife.

         (*equal contribution). Sep 3;2:e00943. PMCID: PMC3762337.

    • Faculty of 1000: Rated “Very Good” http://f1000.com/prime/718101795
  • McKenney, RJ, Weil, SJ, Scherer, J, & Vallee, RB (2011). Mutually Exclusive

         Cytoplasmic Dynein Regulation by NudE-Lis1 and Dynactin. Journal of Biological

         Chemistry, 286(45), 39615–39622. PMID: 21911489.

  • Yi, JY, Ori-McKenney, KM, McKenney, RJ, Vershinin, M, Gross, SP, &

         Vallee, RB (2011). High-resolution imaging reveals indirect coordination of opposite   

         motors and a role for LIS1 in high-load axonal transport. Journal of Cell Biology,

         195(2), 193–201. PMID: 22006948.

     

  • Kunwar, A., Tripathy, SK, Xu, J, Mattson, MK, Anand, P, Sigua, R, Vershinin,

         M, McKenney, RJ, Yu CC, & Gross, SP (2011). Mechanical stochastic tug-of-

         war models cannot explain bidirectional lipid-droplet transport. PNAS, 108(47),

         18960-18965. PMID: 22084076.

  • McKenney, RJ*, Vershinin, M*, Kunwar, A, Vallee, RB, & Gross, SP (2010).

         LIS1 and NudE induce a persistent dynein force-producing state. Cell, 141(2), 304–

         314. PMID: 20403325 (*equal contribution).

    • Faculty of 1000: Rated “Very Good” http://f1000.com/prime/3110957
  • Stehman, SA, Chen, Y, McKenney, RJ, & Vallee, RB (2007). NudE and NudEL

         are required for mitotic progression and are involved in dynein recruitment to

         kinetochores. Journal of Cell Biology, 178(4), 583–594. PMID: 17682047.

     

  • Suzuki, SO, McKenney, RJ, Mawatari, S-Y, Mizuguchi, M, Mikami, A, Iwaki, T,

         Goldman, JE, Canoll, P, & Vallee RB. (2007). Expression patterns of LIS1, dynein

         and their interaction partners dynactin, NudE, NudEL and NudC in human gliomas

         suggest roles in invasion and proliferation. Acta Neuropathologica, 113(5), 591–  

         599. PMID: 17221205.

  • Bahassi, EM, Myer, DL, McKenney, RJ, Hennigan, RF, & Stambrook, PJ

         (2006). Priming phosphorylation of Chk2 by polo-like kinase 3 (Plk3) mediates its full

         activation by ATM and a downstream checkpoint in response to DNA damage.

         Mutation research, 596(1-2), 166–176. PMID: 16481012.