Stacey Combes

image of Stacey Combes

Assistant Professor of Neurobiology, Physiology, and Behavior


Neurobiology, Physiology and Behavior

Offices and Labs

189 Briggs Hall
165 Briggs Hall

Profile Introduction

Research in the Combes Lab focuses on the physical interaction between flying insects and their environment, and on how physiology, morphology and behavior contribute to the performance of ecologically relevant flight behaviors. Our work combines lab-based flight biomechanics with field-based insect ecology to understand the physical foundations of diverse, natural flight behaviors. Projects in the lab explore topics such as flexible wing morphology, the mechanics of aerial predator-prey interactions, flight through cluttered environments, causes and consequences of wing damage, and the effects of turbulent airflow on flight stability.


2002 PhD Zoology University of Washington
1994 B.A. Integrative Biology University of California, Berkeley

Research Interests

AERIAL INTERACTIONS: Biomechanics and behavior during aerial predator-prey and aggressive interactions

FLIGHT IN COMPLEX PHYSICAL ENVIRONMENTS: Maneuvering flight through clutter; collisions and consequences of insect wing damage

FLIGHT IN TURBULENCE AND UNSTEADY FLOW: Effects of environmental turbulence on insect flight performance and movement patterns

MORPHOLOGY AND FLIGHT CONTROL: Flexible wing morphology and secondary control structures in insect flight


- Roslyn Abramson Award for excellence and sensitivity in teaching undergraduates, Harvard University, 2014
- Certificate of Teaching Excellence, Derek Bok Center for Teaching and Learning, Harvard University, 2013
- NSF Early Faculty Development (CAREER) Award, 2013
- Miller Institute post-doctoral research fellowship, U.C. Berkeley, 2004-2007
- Best Talk, General Biomechanics, Society for Experimental Biology, 2012 & 2006
- NSF Graduate Research Fellowship, 1996-2001
- Achievement Rewards for College Scientists (ARCS) Fellowship, 1997-2000
- Best Student Talk, Invertebrate Zoology, Society for Integrative & Comparative Biology, 2002 & 2001
- Best Science News Article, Society for Technical Communication, International competition, 2001

Department and Center Affiliations

Entomology Graduate Program


Society for Integrative and Comparative Biology (SICB)
Society for Experimental Biology (SEB)

CBS Grad Group Affiliations

Animal Behavior

Teaching Interests

Animal Behavior, Biomechanics, Physiological Ecology, Scientific Writing


NPB 102 Animal Behavior (Spring 2016, Fall 2016)


2/2/2016 11:15:32 AM
  • Crall, J.D., Chang, J.J., Oppenheimer, R.L., and Combes, S.A. (2017).  Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence.  Interface Focus 7(1): 20160086. DOI: 10.1098/rsfs.2016.0086

  • Mistick, E.A., Mountcastle, A.M., and Combes, S.A. (2016).  Wing flexibility improves bumblebee flight stability.  J. Exp. Biol. 219(21): 3384-3390.  DOI: 10.1242/jeb.133157

  • Chang, J.J., Crall, J.D. and Combes, S.A. (2016).  Wind alters landing dynamics in bumblebees.  J. Exp. Biol. 219(18): 2819-2822.  DOI: 10.1242/jeb.137976

  • Switzer, C.M. and Combes, S.A. (2016).  Bumblebee sonication behavior changes with plant species and environmental conditions.  Apidologie,  DOI: 10.1007/s13592-016-0467-1

  • Switzer, C.M. and Combes, S.A. (2016).  Bombus impatiens (Hymenoptera: Apidae) display reduced pollen foraging behavior when marked with bee tags vs. paint.  J. Mellitology 62: 1-13.  DOI:

  • Switzer, C.M. and Combes, S.A. (2016).  The neonicotinoid pesticide, imidacloprid, affects Bombus impatiens (bumblebee) sonication behavior when consumed at doses below the LD50.  Ecotoxicology 25(6): 1150-1159.  DOI: 10.1007/s10646-016-1669-z

  • Mountcastle, A.M., Alexander, T.M., Switzer, C. M., and Combes, S.A. (2016).  Wing wear reduces bumblebee flight performance in a dynamic obstacle course. Biol. Lett. 12(6):  20160294.  DOI: 10.1098/rsbl.2016.0294

  • Switzer, C.M., Hogendoorn, K., Ravi, S., and Combes, S.A. (2016).  Shakers and head bangers: differences in sonication behavior between Australian Amegilla murrayensis (blue-banded bees) and North American Bombus impatiens (bumblebees).  Arthopod Plant Interact., published on-line 12/1/15.  DOI: 10.​1007/​s11829-015-9407-7

  • Mountcastle, A.M., Ravi, S., and Combes, S.A. (2015).  Nectar vs. pollen loading affects the tradeoff between flight stability and maneuverability in bumblebees.  Proc. Nat. Acad. Sci. US  112(33): 10527-10532. DOI: 10.1073/pnas.1506126112 

  • Crall, J.D., Ravi, S., Mountcastle, A.M., and Combes, S.A. (2015).  Bumblebee flight performance in cluttered environments: effects of obstacle orientation, body size and acceleration. J. Exp. Biol. 218(17): 2728-2737.  DOI: 10.1242/jeb.121293

  • Crall, J.D., Gravish, N., Mountcastle, A.M., and Combes, S.A. (2015).  BEEtag: a low-cost, image based tracking system for the study of animal behavior and locomotionPLoS One 10(9): e0136487.  DOI: 10.1371/journal.pone.0136487

  • Gravish, N., Peters, J.M., Combes, S.A. and Wood, R.J. (2015).  Collective flow enhancement by tandem flapping wings.  Phys. Rev. Lett. 115(18): 188101.  DOI: 10.1103/PhysRevLett.115.188101

  • Ravi, S., Crall, J.D., McNeilly, L., Gagliardi, S.F., Biewener, A.A. and Combes, S.A. (2015).  Hummingbird flight stability and control in freestream turbulent winds.  J. Exp. Biol. 218: 1444-1452.  DOI: 10.1242/​jeb.114553

  • Hedrick, T.L., Miller, L.A. and Combes, S.A. (2015).  Recent developments in the study of insect flight. Can. J. Zool. 93: 925-943.  DOI: 10.1139/cjz-2013-0196

  • Mountcastle, A.M. and Combes, S.A. (2014).  Biomechanical strategies for mitigating collision damage in insect wings: structural design versus embedded elastic materials.  J. Exp. Biol. 217: 1108-1115. DOI: 10.1242/​jeb.092916

  • Combes, S.A. (2014).  Neuroscience: Dragonflies predict and plan their hunts.  Invited News & Views article summarizing paper by Misciati, Lin, et al.  Nature 517: 279-280.  DOI: 10.1038/ nature14078 

  • Ravi, S., Crall, J., Fisher, A. and Combes, S. (2013). Rolling with the flow: Bumblebees flying in unsteady wakes. J. Exp. Biol. 216: 4299-4309.  DOI: 10.1242/jeb.090845

  • Mountcastle, A.M. and Combes, S.A. (2013).  Wing flexibility enhances load-lifting capacity in bumblebees.  Proc. Roy. Soc. B 280: 20130531.  DOI: 10.1098/rspb.2013.0531

  • Combes, S.A., Salcedo, M.K., Pandit, M.M. and Iwasaki, J.M. (2013).  Capture success and efficiency of dragonflies pursuing different types of prey.  Integr. Comp. Biol. 53(5): 787-798.  DOI: 10.1093/icb/ict072

  • Combes, S.A., Rundle, D.E., Iwasaki, J.M. and Crall, J.D. (2012).  Linking biomechanics and ecology through predator-prey interactions: Flight performance of dragonflies and their prey.  J. Exp. Biol. 215: 903-913.  DOI: 10.1242/​jeb.059394

  • Donoughe, S.T., Crall, J.D., Merz, R.A. and Combes, S.A. (2011).  Resilin in dragonfly and damselfly wings and its implications for wing flexibility.  J. Morph. 272(12): 1409-1421.  DOI: 10.1002/ jmor.10992

  • Combes, S.A., Crall, J.D. and Mukherjee, S. (2010).  Dynamics of animal movement in an ecological context: Dragonfly wing damage reduces flight performance and predation success. Biol. Lett. 6(3): 426-429.  DOI: 10.1098/rsbl.2009.0915

  • Combes, S.A. (2010). Materials, structure, and dynamics of insect wings as bioinspiration for MAVs.  In Encyclopedia of Aerospace Engineering, Vol. 7 (Vehicle Design).  John Wiley & Sons, UK.  DOI: 10.1002/9780470686652.eae404

  • Combes, S.A. and Dudley, R. (2009).  Turbulence-driven instabilities limit insect flight performance.  Proc. Nat. Acad. Sci. US 106(22): 9105-9108.  DOI: 10.1073/pnas.0902186106

  • Shang, J.K., Combes, S.A., Finio, B.M. and Wood, R.J. (2009).  Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.  Bioinsp. & Biomim. 4(3): 036002.  DOI: 10.1088/1748-3182/4/3/036002        

  • Combes, S.A. and Daniel, T.L. (2003).  Flexural stiffness in insect wings.  I. Scaling and the influence of wing venation.  J. Exp. Biol. 206(17): 2979-2987.  DOI: 10.1242/​jeb.00523

  • Combes, S.A. and Daniel, T.L. (2003).  Flexural stiffness in insect wings.  II.  Spatial distribution and dynamic wing bending.  J. Exp. Biol. 206(17): 2989-2997.  DOI: 10.1242/​jeb.00524

  • Combes, S.A. and Daniel, T.L. (2003).  Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sextaJ. Exp. Biol. 206(17): 2999-3006.  DOI: 10.1242/​jeb.00502

  • Daniel, T.L. and Combes, S.A. (2002).  Flexible wings and fins: bending by inertial or fluid-dynamic forces?  Int. Comp. Biol. 42(5): 1044-1049.  DOI: 10.1093/icb/42.5.1044

  • Combes, S.A. and Daniel, T.L. (2001). Shape, flapping and flexion: Wing and fin design for forward flight.  J. Exp. Biol. 204(12): 2073- 2085.