Andrea Schreier

image of Andrea Schreier

Adj Asst Professor

Departments

Animal Science

Offices and Labs

2235 Meyer Hall, Davis, CA 95616
+1 530 752 0664

Degrees

2012 PhD Ecology University of California Davis
2006 MS Wildlife Genetics Purdue University
2003 BS Biology, Chemistry Minor Hillsdale College

Research Interests

Genetic tools to improve management/conservation of fish and wildlife species

My group uses genetic and genomic tools to answer questions that directly influence the management and conservation of North American fish and wildlife species.  We are particularly interested in the conservation of native California fishes such as delta smelt, sturgeon, and salmonids although we also study invertebrates, amphibians, and mammals. Much of this research is conducted collaboratively with state, tribal, or federal agency biologists, providing students with opportunities to work directly with conservation practitioners.

Improving conservation and commercial aquaculture to protect wild populations

Aquaculture is a tool that can be used to sustain endangered fish populations directly through release of captive reared fish into the wild (conservation aquaculture) or indirectly by providing an alternative source of fish protein to meet human demand (commercial aquaculture). My group applies genetics/genomics to improve the management of captive fish populations for conservation and commercial aquaculture.  We conduct ongoing genetic monitoring of captive breeding programs for delta smelt and white sturgeon. We also are studying the costs and benefits of spontaneous autopolyploidy to the white sturgeon commercial aquaculture industry.

Autopolyploidy in Acipenseriform fishes

Acipenseriform fishes (sturgeon and paddlefishes) are ancient polyploids that can spontaneously triploidize in aquaculture.  Spontaneous autopolyploid white sturgeon are fertile and produce viable offspring when crossed with normal conspecifics.  We know that the additional genome copy is due to retention of the second polar body during meiosis but its not clear what is causing some females to produce large numbers of triploid offspring in captivity while spontaneous autopolyploidy in the wild is rare. We are conducting experiments to determine what factors are responsible for high rates of second polar body retention as well as evaluating how genome duplication affects sexual development of spontaneous autopolyploids and their offspring. We are also interested in using families containing even ratios of normal and spontaneous autopolyploid offspring to determine how an incipient polyploidization event affects genome structure and function.

Environmental DNA Applications

Environmental DNA (eDNA), or DNA extracted from environmental samples such as water, sediment, or soil, can be used to measure biodiversity (metabarcoding) and detect rare or cryptic species in the wild. We are collaborating with several resource management agencies to develop protocols and genomic tools to improve monitoring of rare species, such as the delta smelt, using eDNA.

Awards

Robert L. Kendall Award (Best paper in Transactions of the American Fisheries Society in 2013)

Department and Center Affiliations

Department of Animal Science

ProfessionalSocieties

American Fisheries Society
North American Sturgeon and Paddlefish Society (Executive Board member)
World Sturgeon Conservation Society
IUCN Sturgeon Specialist Group

CBS Grad Group Affiliations

Integrated Genetics and Genomics

Specialties / Focus

Integrated Genetics and Genomics
  • Population and Quantitative Genetics
  • Ecological and Wildlife Genetics

Graduate Groups not Housed in CBS

Ecology Graduate Group

Teaching Interests

I am interested in teaching courses related to molecular ecology and evolution. While teaching is not my primary focus as adjunct faculty, I plan to offer seminar courses of interest to IGG students.

Courses

ECL 200A I teach the population genetics and microevolution module of the Ecology Graduate Group core course (Winter)
ECL 290 Writing Science for Ecologists (Fall)
ANG 198 The Science of Captive Breeding and Reintroduction (Spring)

Personal Interests

In my spare time, I enjoying reading, hiking with our dogs, travelling internationally, photographing wildlife, and raising food sustainably. My husband and I live on a small hobby farm where we grow fruits and vegetables as well as raise chickens.

Publications

  • See our projects page (http://gvl.ucdavis.edu/projects/) for a more detailed description of our current projects and our publications page (http://gvl.ucdavis.edu/publications/) for a list of the lab's recent publications.