F. Javier Arsuaga

image of F. Javier Arsuaga

PROF

Departments

Mathematics
Molecular & Cellular Biology

Offices and Labs

Briggs Hall 0009 and MSB 2115
1-530-754-0416
1-530-601-4444 X 4015

Profile Introduction

I develop mathematical and computational methods to address questions that arise in the study of the 3D structure of chromosomes. The three dimensional (3D) structure of the genome plays a key role in the dynamics of the living cell tightly regulating essential biological processes such as transcription, replication and repair. In humans, disruption of the 3D structure of the genome, in the form of large-scale rearrangements and copy number changes, is the signature of DNA-damaging agents and has been associated with a wide range of diseases, including cancer. In parasitic organisms, the 3D structure of the genome is a frequent drug target. Descriptions of the 3D structure genomes however have remained elusive even for the simplest organism.

Degrees

2000 PhD Mathematics Florida State University
1993 BS Mathematics Universidad de Zaragoza, Spain

Awards

2013-2014 Long Term Visitor of the Institute of Mathematics and Its Applications (IMA), Minneapolis, MN
2012 Plenary speaker at “Conference in Computational Physics”, Kobe, Japan
2011 Research selected by NSF for the NSF highlights
2007 Lont Term Visitor of the Institute of Mathematics and Its Applications (IMA), Minneapolis, MN
1997-2000 Fellow of the Program in Mathematics and Molecular Biology (PMMB)

Department and Center Affiliations

2014-present Professor of Molecular and Cell Biology and of Mathematics, UC Davis
2012-2014 Associate Professor of Mathematics, San Francisco State University
2005-2012 Assistant Professor of Mathematics, San Francisco State University
2003-2005 Associate Specialist at the UCSF Comprehensive Cancer Center
2000-2003 Postdoctoral fellow in the Mathematics and Molecular and Cell Biology, UC Berkeley

ProfessionalSocieties

American Association for the Advancement of Science
American Society for Virology
American Mathematical Society

CBS Grad Group Affiliations

Biochemistry, Molecular, Cellular and Developmental Biology

Courses

MAT 235A Probability Theory (Fall 2015)
MAT 280 Random Knotting (Fall 2015)
MCB 139 Undergraduate Seminar in Biochemistry (Spring 2016)
MAT 180 Analyzing Molecular Biology Data Using Topological Methods (Winter 2017)
MAT 128C Numerical Analysis in Differential Equations (Spring 2017)
BCB 298 Computer Programming in Molecular and Cellular Biology (Spring 2017)
BCB 215 Basic Principles of Three Dimensional Chromosome Organization (Spring 2017)

Publications

  • Topological analysis of DNA packing in bacteriophages 

    7. Arsuaga, J., Roca, J. and Sumners, D. W. Topology of viral DNA. (Book chapter) in "Emerging Topics in Physical Virology" Imperial College Press. (2010) Ed. P. G. Stockley and R. Twarock.

    6. Arsuaga J, Diao Y and Vazquez M Mathematical methods in DNA topology: Applications to chromosome organization and site-specific recombination. IMA volumes in Mathematics and Its Applications. Volume 150: Mathematics of DNA Structure, Function, and Interactions (2009) Edited by Craig John Benham, Stephen Harvey, Wilma K. Olson, De Witt L. Sumners, and David Swigon. Springer Science + Business Media, LLC, New York. (Book chapter)

    5. Arsuaga J, and Diao Y (2008) DNA knotting in Spooling like conformations in Bacteriophages. Journal Computational and Mathematical Methods in Medicine 9 (3-4) 303-316.

    4. Arsuaga, J., Vazquez, M., McGuirk, P., Sumners D.W. and Roca J. (2005) DNA knots reveal a chiral organization of DNA in phage capsids. Proceedings of the National Academy of Sciences USA. 102(26):9165-9

    3. Arsuaga, J., Tan, R., Vazquez, M., Sumners, D. W., and Harvey, S. C. (2002) Investigation of Viral DNA Packaging Using Molecular Mechanics Models. Biophysical Chemistry, 101-102(1): 475-484.

    2. Arsuaga J, Vazquez, M., Trigueros, S., Sumners, D. W., and Roca, J. (2002) Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proceedings of the National Academy of Sciences USA 2002, 99(8):5373-5377

    1. Trigueros, S., Arsuaga, J., Vazquez, M., Sumners, D.W., Roca, J. (2001) Novel display of knotted DNA molecules by two dimensional gel electrophoresis. Nucleic Acids Research, 29 (13): e67.

    Genomic Analysis of the bacterial chromosome

    2. Postow, L., Hardy, C., Arsuaga, J. and Cozzarelli, N. R. (2004) Topological domain structure of the Escherichia coli chromosome. Genes and Development. 18(14):1766-79.

    1. Peter, B., Arsuaga, J., Breier, A., Khodursky, A., Brown, P., and Cozzarelli N. R. (2004) Genomic analysis of supercoiling sensitive genes in Escherichia coli: responses to topoisomerase inhibition. Genome Biology 5 (11) R-87.

    Topological analysis of Kinetoplast DNA

    8. Diao Y., Hinson K., Sun Y. and Arsuaga J. (2015) The effect of volume exclusion on the formation of DNA minicircle networks. J. Phys. A  Math Theor. 48 (43) 435202

    7. Diao Y., Rodriguez V., Klingbeil M and Arsuaga J. Orientation of DNA minicircles balances density and topological complexity in kinetoplast DNA. Plos One 10(6): e0130998. 

    6. Arsuaga J., Diao Y, Klingbeil M. and Rodriguez V. (2014) Properties of Topological Networks of Flexible Polygonal Chains. Mol. Based. Math. Bio. 2: 98-106.

    5. Rodriguez V, Diao Y. and Arsuaga J. (2013) Percolation phenomena in randomized topological networks. J. Phys.: Conf. Ser.  454 012070

    4. Arsuaga J, Diao Y and Hinson K (2012) The effect of angle restriction on the topological characteristics of minicircle networks. J. Stat. Phys. 146: 434-445.

    3. Arsuaga J, Diao Y and Hinson K, (2012) The growth of minicircle networks on regular lattices, J. of Phys. A: Math. Theor. 45 035004

    2. Diao Y, Hinson K, Kaplan R, Vazquez M, and Arsuaga J (2012) The effects of minicircle density on the topological structure of the mitochondrial DNA from trypanosomes. Journal of Mathematical Biology 64(6) 1087-1108 

    1. Arsuaga, J., Blackstone, T., Diao,Y., Karadayi, E. , Saito, Y. (2007)  Linking of Uniform Random Polygons in Confined Spaces. J. Phys. A: Math. Gen. 40: 1925-1936

    Statistical analysis of the yeast genome

    1. Segal M, Xiong H, Capurso D, Vazquez M and Arsuaga J (2014) Reproducibility of three-dimensional chromatin configuration reconstructions. Biostatistics 15(3): 442-56. 

    Statistical, topological and combinatorial analysis of large scale organization of the human genome

    6. Arsuaga J., Heskia I., Hosten S., and Maskalevich T. (2015) Uncovering Proximity of Chromosome Territories using Classical Algebraic Statistics. Journal of Algebraic Statistics. 6 (2):133-149.  

    5. Arsuaga J., Jayasinghe R., Scharein R, Segal M and Vazquez M. (2015) Current analytical methods are insufficient to determine the topological complexity of the human genome. Frontiers in Molecular Biosciences, section Mathematics of Biomolecules 2(48). 

    4. Blackstone, T, Scharein, R., Varela, R., Diao, Y., and Arsuaga J. (2011) Modeling Chromosome Intermingling Using Overlapping Uniform Random Polygons. Journal of Mathematical Biology  62(3): 371-89.

    3. Vives, S., Bradford, L., Vazquez, M., Brenner, D., Sachs, R. K., Hlatky, L., Cornforth, M. and Arsuaga, J. (2005) SCHIP: Statistics of Chromosome Interphase Positioning based on interchange data. Bioinformatics 21(14):3181-2.

    2. Arsuaga, J., Greulich-Bode, K., Vazquez, M., Brukner, M.,Hahnfeldt,P., Brenner, D.J., Sachs, R. and Hlatky, L. (2004) Chromosome positioning through radiogenic aberrations. International Journal of Radiation Biology 80 (7), 507-516.

    1. Cornforth, M. N., Greulich-Bode, K. M., Loucas, B. D., Arsuaga, J., Vazquez, M., Daye,J., Sachs, R. K.,Bruckner, M., Molls, M., Hahnfeldt, P., Hlatky, L., Brenner, D. J. (2002) Chromosomes are predominantly located randomly with respect to each other in interphase human cells. The Journal of Cell Biology 159 (2), 237-244.

    Combinatorial and statistical analysis of radiation induced chromosome aberrations

    3. Levy, D., Vazquez, M., Loucas, B. D., Cornforth, M. N., Sachs, R. K., Arsuaga, J. (2004) Comparing DNA damage-processing pathways by computer analysis of chromosome painting data. Journal of Computational Biology 11(4): 626-641.

    2. Vazquez, M., Greulich-Bode, K. M., Arsuaga, J., Cornforth, M. N., Bruckner, M., Sachs,R. K., Hahnfeldt, P., Molls, M., Hlatky, L. (2002) Computer analysis of mFISH  chromosome aberration data uncovers an excess of very complex metaphases. International Journal of Radiation Biology 2002, 78(12): 1103-1115.

    1. Sachs, R. K., Arsuaga, J., Vazquez, M., Hahnfeldt, P., and Hlatky, L. (2002) Using graph theory to analyze chromosome aberrations. Radiation Research 158 (5): 556-567.

    Topological analysis of breast cancer genomic data

    5. Ardanza-Trevijano S., Gonzalez G., Borrman T. Garcia J.L. Arsuaga J. (2016) Toplogical Analysis of Amplicon Structure in Comparative Genomic Hybridization (CGH) Data: An Application to ERBB2/HER2/NEU Amplified Tumors. Lecture Notes in Computer Science. 9667, Springer 2016, ISBN 978-3-319-39440-4 (Peer Reviewed Book Chapter)

    4. Arsuaga J., Borrman T., Cavalcante R., Gonzalez G. and Park C (2015) Identification of Copy Number Aberrations in Breast Cancer Subtypes using Persistence Topology. Microarrays 4 (3), 339-369

    3. Arsuaga J , Baas N, DeWoskin D, Mizuno H, and Pankov A, Park C (2012) A topological signature derived from expression profiles for the identification of breast cancer subtypes. Applicable Algebra in Engineering, Communication and Computing 23 (1) 3-15. 

    2. DeWoskin, D., Climent, J., Cruz-White, I., Vazquez, M., Park, C. and Arsuaga, J. (2010) Applications  of Computational Homology to Prediction of Treatment Response in Breast Cancer Patients. Topology and Its Applications. 157 (1) 157-164

    1. Climent, J., Mao, J., Garcia, J. L., Arsuaga, J., Perez-Losada, J. (2007) Characterization of Breast Cancer by Array CGH. Biochemistry and Cell Biology  85(4); 497-508 (Review)

    Biologically Motivated Basic Principles of Polymer Physics   

    9. Ishihara, K; Pouokam, M; Suzuki, A; Scharein, R; Vazquez, M; Arsuaga, J; Shimokawa,
    K (2017) Bounds for minimum step number of knots confined to tubes in the
    simple cubic lattice J. of Phys. A : Math. Theor. (In press). 

    8. Ishihara K, Scharein R, Diao Y, Arsuaga J, Vazquez M, Shimokawa K (2012) Bounds for minimum step number of knots confined to slabs in the simple cubic lattice. J. of Phys. A : Math. Theor. 45 065003 

    7. Portillo J, Diao Y,Scharein R, Arsuaga J and Vazquez M (2011) On the mean and the variance of the writhe. J. Phys A: Math Theor. 44 275004.

    6. Arsuaga J, Borgo B, Diao Y and Scharein R (2009) The Average Crossing Number of Equilateral Random Polygons in Confined Volumes. J. Phys. A: Math. Theor. 42 465202. 

    5. Scharein R, Ishihara K, Arsuaga J, Shimokawa K, Vazquez M (2009) Bounds for minimal step number of knots in the simple cubic lattice. J. Phys A: Math. and Theor 42 475006-457030

    4. Varela R, Hinson K, Arsuaga J, Diao Y (2009) A fast ergodic algorithm for generating ensembles of polygons. J. Phys A: Math Theor42 095204 .

    3. Arsuaga J, Blackstone T, Diao Y, Karadayi E, Saito Y (2007)  Knotting of Uniform Random Polygons in Confined Spaces. J. Phys. A: Math Gen. 40: 11697-11711

    2. Blackstone T, McGuirk P, Laing C, Vazquez M, Roca J, and Arsuaga J. (2007) The role of writhing in DNA condensation. Proceedings of International Workshop on Knot Theory for Scientific Objects. OCAMI Studies Volume 1 (2) Osaka Municipal. Universities Press; 239-250 Osaka, Japan

    1. Ardanza-Trevijano S. Arsuaga J, Crespo JA, Extremiana J I, Hernandez LJ, Rivas MT, Roca J, Vazquez M (2007) La topologia como herramienta en otros campos. La Gaceta de la Real Sociedad Matematica Espanola 10 (3); 911-932. (Review)